

ANSWER OF MODEL PAPER FOR AIEEE

PHYSICS

Ans. Greater than v₀ Reason: When electron reaches near curved surface the force due to induces charges accelerates to electron.

Ans. 18 μ C. **Reason.** $I = \frac{12}{6+2} = \frac{3}{2}$

$$V = 12 - 2 \times \frac{3}{2} = 9V$$

Q = $CV = 2 \times 9 = 18 \mu C$. Ans. $\frac{10}{11}C_0$ Reason: M $\frac{10}{2C_0} = \frac{5}{3}C_0$

Ans. 320 cm Reason: In case of zero deflection in galvanometer.

$$V_{AJ} = \frac{E}{2}$$

$$\therefore iR_{AJ} = \frac{E}{2} \quad or \left(\frac{E}{15r + r}\right) \left(\frac{15r}{600}\right) AJ = \frac{E}{2}$$

AJ = 320 cm.

Ans. 2 IaB Reason: Initially $F_1 = mg + IaB$ (down wards) when the direction of current is reversed $F_2 = mg - laB (down wards) \Rightarrow \Delta F = 2 laB$.

Ans. $\frac{T}{2\sqrt{3}}$ Reason : $T = 2\pi \sqrt{\frac{I}{MH}}$; MI of each part $\frac{1}{6^3}$

and magnetic moment of each part = $\frac{M}{c}$. So net MI of

system = $\frac{1}{6^3} \times 6 = \frac{1}{6^2}$ and net magnetic moment

$$=\frac{4M}{6}-\frac{2M}{6}=\frac{M}{3}$$

.. time period of the system

$$T' = 2\pi \sqrt{\frac{I/36}{(M/3)H}} = \frac{1}{2\sqrt{3}} 2\pi \sqrt{\frac{I}{MH}} = \frac{T}{2\sqrt{3}}$$

Ans. 10 π mV Reason : the induced emf between centre and rim of the rotating disc is

$$E = \frac{1}{2} B \omega R^2 = \frac{1}{2} \times 0.1 \times 2\pi \times 10 \times (0.1)^2 = 10\pi \times 10^{-3} \text{ volt.}$$

Ans. 80 Hz Reason: With dc : $P = \frac{V^2}{R} \Rightarrow R = \frac{(10)^2}{20} = 5\Omega$

With ac : P =
$$\frac{V_{rms}^2 R}{Z^2} \Rightarrow Z^2 = \frac{(10)^2 \times 5}{10} = 50 \ \Omega^2$$

Also
$$Z^2 = R^2 + 4\pi^2 v^2 L^2$$

$$\Rightarrow$$
 50 = (5)² + 4(3.14)² v² (10×10⁻³)² \Rightarrow v = 80 Hz.

Ans. The peaks at R and S would remain at the same wavelength and cut off wavelength at P would decrease Reason: Peak on the graph represent characteristic Xray spectrum. Every peak has a certain wavelength, which depends upon the transition of electron inside the atom of the target. While λ°_{min} depends upon the accelerating voltage (As $\lambda_{min} \propto 1/V$)

10. Ans. $\sqrt{\frac{8}{3}}$ Reason: de-Broglie wavelength $\lambda = \frac{h}{mv_{rms}}$

rms velocity of a gas particle at the given temperature (T) is given as $\frac{1}{2}$ mv_{rms}² = $\frac{3}{2}$ kT

$$\Rightarrow v_{rms} = \sqrt{\frac{3kT}{m}} \Rightarrow mv_{rms} = \sqrt{3mkT}$$

$$\therefore \lambda = \frac{h}{mv_{rms}} = \frac{h}{\sqrt{3mkT}}$$

$$\frac{\lambda_{H}}{\lambda_{He}} = \sqrt{\frac{m_{He}T_{He}}{m_{H}T_{H}}} = \sqrt{\frac{4(273 + 127)}{2(273 + 27)}} = \sqrt{\frac{8}{3}}$$

11. Ans. P.E increases and K.E decreases Reason: P.E ∞ - $\frac{1}{r}$ and K.E $\propto \frac{1}{r}$. As r increases so K.E decreases but

12. Ans. g/2, g. Reason: After string is cut, free body diagram of block A gives:

cut,
$$A \longrightarrow 2$$
mg

 $2m a_A = 3mg - 2mg$

or
$$a_A = \frac{mg}{2m} = \frac{g}{2}$$

Free body diagram of block B gives :

∴ $ma_B = mg$

13. **Ans.** $\frac{2}{3} \frac{m v_0^2}{x_0^2}$. **Reason.** $V_A = V_0 \implies V = \frac{m V_0}{m + 2m} = \frac{V_0}{3}$

$$\Rightarrow \frac{1}{2} m v_0^2 = \frac{1}{2} k x_0^2 + \frac{1}{2} 3 m \left(\frac{v_0}{3}\right)^2$$

$$\Rightarrow \frac{1}{2}kx_0^2 = \frac{1}{2}mv_0^2 \left[1 - \frac{1}{3}\right]$$

$$\Rightarrow kx_0^2 = \frac{2}{3}mv_0^2 \Rightarrow k = \frac{2mv_0^2}{3x_0^2}$$

14. **Ans**. 0.98 N. **Reason:** μ N = $\frac{5}{10}$ (5) = 2.5 N $\frac{5}{10}$

So
$$F_f = \frac{1}{10} (9.8) = .98N$$
.
Ans. 10,000 J Reason: WD = charg

15. **Ans.** 10,000 J **Reason:** WD = charge in PE = $P_2 - P_1$ $P_2 = mg I/2 = 500 \times 10 \times 5/2 = 12500 J.$ $P_1 = 5 \times m \text{ g a}/2 = 5 \times 100 \times 10 \times \frac{1}{2} = 2500$ \therefore WD = 12500 - 2500 = 10,000 J.

16. Ans. Sphere, disc, shell, ring. Reason: I_{Sphere} < I_{Disc} < I_{Shell} < I_{Ring} We know that body possess minimum moment of inertia will reach the bottom first and body possess maximum moment of inertia will reach the bottom of last.

17. **Ans.**
$$\sqrt{E} = \sqrt{E_1} + \sqrt{E_2}$$
.

Reason:
$$E_1 = \frac{1}{2} Kx^2 \Rightarrow x = \sqrt{\frac{2E_1}{K}}$$
, $E_2 = \frac{1}{2} Ky^2$

$$\Rightarrow y = \sqrt{\frac{2E_2}{K}} \text{ and } E = \frac{1}{2} K(x+y)^2 \Rightarrow x + y = \sqrt{\frac{2E}{K}}$$

$$\Rightarrow \sqrt{\frac{2E_1}{K}} + \sqrt{\frac{2E_2}{K}} = \sqrt{\frac{2E}{K}} \Rightarrow \sqrt{E_1} + \sqrt{E_2} = \sqrt{E}$$

18. **Ans.** 0.10 s **Reason:** For string, $\frac{\text{Mass}}{\text{length}} = \text{m} = \frac{10^{-2}}{0.4}$

= 2.5×10⁻² kg/m
∴ velocity v =
$$\sqrt{\frac{T}{m}} = \sqrt{\frac{1.6}{2.5 \times 10^{-2}}} = 9 \text{ m/s}$$

For constructive interference between successive

$$\Delta t_{\text{min}} = \frac{2I}{v} = \frac{2(0.4)}{9} = 0.1 \text{ sec.}$$

19. Ans. 9: 8. Reason: When source is approaching the observer, the frequency heard

$$n_a = \left(\frac{v}{v - v_s}\right) \times n = \left(\frac{340}{340 - 20}\right) \times 1000 = 1063 \text{ Hz}$$

$$n_r = \left(\frac{v}{v + v_s}\right) \times n = \frac{340}{340 + 20} \times 1000 = 944$$

20. **Ans.** 15 cm, concave **Reason:** $\frac{1}{f} = \left(\frac{\mu_a}{\mu_b} - 1\right) \left[\frac{2}{B}\right]$

$$\Rightarrow \frac{1}{f} = \left(\frac{1}{1.5} - 1\right) \times \frac{2}{10} \Rightarrow f = -15.$$

21. **Ans.** 18 **Reason:** $n_1\lambda_1 = n_2\lambda_2$

$$\Rightarrow n_2 = n_1 \times \frac{\lambda_1}{\lambda_2} = 12 \times \frac{600}{400} \ = 18.$$

- 22. Ans. Wave nature
- 23. **Ans.** 1590 J **Reason:** $\Delta W_{AB} = 0$ as V = constant.

$$\therefore \Delta Q_{AB} = \Delta U_{AB} = 50 \text{ J}.$$

 $\begin{array}{l} U_{A} = 1500 \text{ J.} \quad \therefore \ U_{B} = (1500 + 50) \text{J} = 1550 \text{ J.} \\ \Delta W_{BC} = \Delta U_{BC} = -40 \text{ J.} \end{array}$

∴
$$\Delta U_{BC} = 40 \text{ J.}$$
 ∴ $U_{C} = (1550 + 40)\text{J} = 1590 \text{ J.}$

24. **Ans.**
$$\left(\frac{\pi}{6}\right)^{1/3}$$
:1 **Reason:** Q = σ At (T⁴ - T₀⁴)

If T, $T_0 \ \sigma$ and t are same for both bodies then

$$\frac{Q_{sphere}}{Q_{cube}} = \frac{A_{sphere}}{A_{cube}} = \frac{4\pi r^2}{6a^2} \ \dots \dots \ (i)$$
 But according to problem, volume of sphere = Volume

of cube
$$\Rightarrow \frac{4}{3}\pi r^3 = a^3 \Rightarrow a = \left(\frac{4}{3}\pi\right)^{1/3} r$$

Substituting the value of a in eqn. (i) we get

Substituting the value of a in eqn.
$$\frac{Q_{\text{sphere}}}{Q_{\text{cube}}} = \frac{4\pi r^2}{6a^2} = \frac{4\pi r^2}{6\left\{\left(\frac{4}{3}\pi\right)^{1/3}r\right\}^2}$$

$$= \frac{4\pi r^2}{6\left(\frac{4}{3}\pi\right)^{2/3}r^2} = \left(\frac{\pi}{6}\right)^{1/3}:1$$

25. Ans. 10 °C Reason: According to Newton's law of cooling According to Newton's law of cooling.

$$\frac{\theta_1 - \theta_2}{t} = K \left\lceil \frac{\theta_1 + \theta_2}{2} - \theta_0 \right\rceil$$

In the first case,
$$\frac{(60-50)}{10} = K \left[\frac{60+50}{2} - \theta_0 \right]$$

$$1 = K[55-\theta_0]$$
 (i)

$$1 = K[55-\theta_0] \qquad \qquad (i)$$
 In the second case,
$$\frac{(50-42)}{10} = K\left[\frac{50+42}{2}-\theta_0\right]$$

$$0.8 = K (46 - \theta_0) \dots (ii)$$

Dividing (i) by (ii), we get
$$\frac{1}{0.8} = \frac{55 - \theta_0}{46 - \theta_0}$$

or 46 -
$$\theta_0 = 44 - 0.8 \; \theta_0 \implies \theta_0 = 10 \, ^{\circ}\text{C}$$

Ans. 450 m/s Reason: By the conservation of momentum

$$0.05 \times v_0 = (5 + 0.05)v \text{ or } v = \frac{0.05v_0}{5.05} = \frac{v_0}{101}$$

Kinetic energy of the interlocked body = work done against frictional force.

$$\therefore \frac{1}{2} \times 5.05 \times \left(\frac{v_0}{101}\right)^2 = 0.2 \times 5.05 \text{ g} \times 5$$

or $v_0 = 101 \sqrt{2 \times 9.8} = 447 \text{ ms}^{-1}$

Ans. $\frac{\omega_0 l}{\sqrt{1+\frac{3m}{M}}}$ Reason. Using the law of conservation

 $\sqrt{\frac{1 - M}{M}}$ of angular momentum $I\omega_0 = (I + mI^2) \omega$ (i) Using the principle of conservation of energy

$$\frac{1}{2}I\omega_0^2 = \frac{1}{2}(I + mI^2)\omega^2 + \frac{1}{2}mv'^2$$

or
$$I\omega_0^2 = (I + mI^2) \frac{I^2 \omega_0^2}{(I + mI^2)^2} + m\upsilon'^2$$

$$I\omega_0^2(I+mI^2) = I^2\omega_0^2 + mv'^2(I+mI)^2$$

or
$$I\omega_0^2 m I^2 = mv'^2 (I + mI)^2$$

Putting I =
$$\frac{1}{3}MI^2$$
, $\frac{1}{3}MI^2\omega_0^2I^2 = v'^2\left(\frac{1}{3}MI^2 + mI^2\right)$

$$\frac{1}{3}M\omega_0^2\,l^2=\upsilon'^2\!\left(m\!+\!\frac{M}{3}\right)\;\text{or}\;\;M\omega_0^2\;\;l^2=\upsilon'^2\left(3m\!+\!M\right)$$

or
$$v' = \frac{\omega_0 I}{\sqrt{1 + 3m/M}}$$

Ans. 9.6 cm Reason. Draw a horizontal line through the mercury-glycerin surface. This is a horizontal line in the same liquid at rest namely, mercury. Therefore, pressure at the points A and B must be the same. Pressure at A = $p_0 + 0.1 \times (1.3 \times 1000) \times g$

$$p_0$$
 = atmospheric pressure

Pressure at B =
$$p_0 + h \times 800 \times g$$

$$+ (0.1 - h) \times 13.6 \times 1000 g$$

$$p_0 + 0.1 \times 1300 \times g$$

$$= p_0 + 800gh + 1360g - 13600 \times g \times h$$

$$\Rightarrow$$
 130 = 800h + 1360 - 13600h

$$\Rightarrow$$
 h = $\frac{1230}{12800}$ = 0.096 m = 9.6 cm.

29. **Ans.** 3360 J **Reason.** A quick process is generally adiabatic and a slow process isothermal. Since 100 g of ice melts, heat given out by the system (gas in the cylinder) is equal to the required latent heat.

 $\Delta Q = -100 \times 10^{-3} \times 336 \times 10^{3} = -3360 \text{ J}$

 $\Delta = 0$ (since it is a cyclic process)

But $\Delta Q = \Delta U + \Delta W$ (always)

∴ -3360 = ∆W

 \therefore work done on the system = $-\Delta W = 3360 \text{ J}$

30. Ans.
$$\frac{1}{4\pi \in_0} \frac{Q(R+r)}{R^2+r^2}$$
 Reason. $q_1 = 4\pi r^2 \sigma$ and $q_2 = 4\pi R^2 \sigma$

$$\begin{split} Q &= q_1 + q_2 = 4\pi (r^2 + R^2) \sigma \text{ or } \sigma = \frac{Q}{4\pi (R^2 - r^2)} \\ V &= \frac{1}{4\pi\epsilon_0} \bigg[\frac{q_1}{r} + \frac{q_2}{R} \bigg] = \frac{1}{4\pi\epsilon_0} \bigg[\frac{4\pi r^2 \sigma}{r} + \frac{4\pi R^2 \sigma}{R} \bigg] \\ \text{or } V &= \frac{\sigma}{\epsilon_0} (R + r) = \frac{1}{4\pi\epsilon_0} \frac{Q(R + r)}{R^2 + r^2} \end{split}$$

CHEMISTRY

- 31. **Ans.** 16 g/mole **Reason:** In SCl₂, 71 parts of chlorine combine with 32 parts of sulphur
 - \therefore 35.5 parts of chlorine combine with S = 16 parts
 - \therefore Eq. mass of S in SCl₂ = 16.
- 32. **Ans.** 4.96 g **Reason:** According to the given reaction $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$

.. Eq. wt. of Na₂S₂O₃ . 5 H₂O =
$$\frac{\text{Mol. wt.}}{1} = \frac{248}{1} = 248$$

100 cm³ of 1 N sol require. Na₂S₂O₃ . 5 H₂O = 248 g \therefore 100 cm³ of 0.2 N of require

$$Na_2S_2O_3$$
 . $5H_2O = \frac{248 \times 0.2}{1000} \times 100 = 4.96 \text{ g}.$

- 33. **Ans.** He⁴
- 34. **Ans.** 25

35. **Ans.** II, III, I **Reason:**
$$H_2S_2O_6HO - S - S - OH \parallel \parallel \parallel \parallel 0 OO$$

$$4\pi$$
-bonds ; H_2SO_3 $HO S_{OH}$ 1π -bond;

- 36. Ans. MgS
- 37. **Ans.** 4 **Reason:** Resonance is possible in sp^2 and sphybrid carbon atoms hence all sp and sp^2 hybrid carbon atoms are in the same plane. $CH_3 C \equiv C CH = CH_2$

 C_3 and C_4 are sp hybridized so $C_1,\ C_2,\ C_3$ and C_4 are linear.

38. Ans. 7-chlorobicyclo [2, 2, 1] heptane Reason:

7-Chlorobicyclo [2, 2, 1] heptane

39. Ans. Reason: Bridgehead free radicals

have pyramidal shape because due to steric strain, the carbon atom carrying the unpaired electron cannot assume a planar geometry.

- 40. **Ans.** 6 **Reason:**It is evident from figure that B occupies octahedral voids and thus, co-ordination number is six.
- 41. **Ans.** 5.49×10^7 C of electricity **Reason:**

$$Al^{3+} + 3e \longrightarrow Al$$
3F 1 mole

$$= 3 \times 96500 \text{ C} = 27 \text{ g}$$

Thus, 27 g of Al require electricity = 3×96500 C

.. 5.12 kg = 5120 g will require electricity

$$= \frac{3 \times 96500}{27} \times 5120 \text{ C} = 5.49 \times 10^7 \text{ C}$$

- - (ii) Reduction potentials of halogens are in the order : $Cl_2 > Br_2 > l_2$. Thus, Cl_2 is reduced most easily and hence is the best oxidizing agent.
 - (iii) The size of the halide ions is in the order $Cl^- < Br^- < l^-$. Greater the size of the halide ion, more easily it can lose electrons and get oxidizied. Thus l^- ions can be oxidized most easily and hence have the greatest reducing power.
- 43. Ans. Nal < NaCl < BaO < CaO
- 44. Ans. CO_2 Reason: $AIF_3 \longrightarrow AI^{++} + F^{-}$

At anode $2F^{-}$ - $2e \longrightarrow F_{2}$

$$Al_2O_3 + F_2 \longrightarrow AlF_3 + O_2$$

$$C + O_2 {\longrightarrow} CO_2$$

- 45. Ans. Zinc oxide can be reduced by C.
- 46. **Ans.** FeSO₄ **Reason:** $2\text{FeSO}_4 \longrightarrow \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$

$$\begin{array}{c} \text{Fe}_2\text{O}_3 + 6\text{HCI} \longrightarrow 2\text{FeCI}_3 \ + 3\text{H}_2\text{O} \\ \text{Yellow} \\ \text{soln.} \end{array}$$

$$\begin{array}{ccc} \text{FeCl}_3 + \text{CNS}^- & & \text{Fe(CNS)}_3 + 3\text{Cl}^- \\ & & \text{Blood red} \\ & \text{coloured soln.} \end{array}$$

47. **Ans.** [Ni(H₂O)₆]²⁴

50. Ans. 2-Chloropropane-1, 3-diol Reason:

- 51. **Ans.** NH₂ NH₂, OH
- 52. **Ans.** Phenolphthalein **Reason**: Only Phenolphthalein does not posses antiseptic properties.
- 53. Ans. conc. H₂SO₄
- 54. **Ans.** CO **Reason:** $K_4Fe(CN)_6 + 6H_2SO_4 + 6H_2O \longrightarrow 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO.$
- 55. **Ans.** H₃PO₂.
- 56. Ans. C₂H₄ Reason: Let the formula of the hydrocarbon be C_xH_y. The combustion of the hydrocarbon can be shown as:

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O_1$$

 $10mL \quad 10\left(x + \frac{y}{4}\right)mL \quad 10x mL$

The first reduction in volume after explosion

$$10 + 10\left(x + \frac{y}{4}\right) - 10x = 20 = 10 + \frac{10y}{4} = 20$$

Thus,
$$y = \frac{10 \times 4}{10} = 4$$

Volume of carbon dioxide produced = 20 mL

Thus,
$$10x = 20$$

 $x = \frac{20}{10} = 2$. Hence, the molecular formula of the hydrocarbon = C_2H_4 .

57. **Ans.** 38.71 g **Reason:** $\therefore \Delta T = \frac{1000 \times K_f \times w}{W \times m}$

$$9.3 = \frac{1000 \times 1.86 \times 50}{62 \times W}$$

 \therefore Ice separated = 200 - 161.29 = 38.71 g

58. **Ans.** 64157 kcal **Reason:** ΔH required for heating = (ms $\Delta T)_{boiler} + (ms \Delta T)_{water}$

 $= 900 \times 0.11 \times 90 + 400 \times 1 \times 90 = 44910 \text{ kcal}$

Since only 70% of heat given is used up to do so.

Actual heat required =
$$\frac{44910 \times 100}{70}$$
 = 64157 kcal

59. **Ans.** $7.5 \times 10^{-4} \text{ M min}^{-1}$ **Reason:**

$$k = \frac{2.030}{t} log \frac{[A_0]}{[A]} = \frac{2.303}{40 min} log \frac{0.1}{0.005} = 0.075 min^{-1}$$

Rate of reaction when concentration of \boldsymbol{x} is 0.01 M

$$= k(X)$$

$$= 0.075 \times 0.01 \text{ M min}^{-1} = 7.5 \times 10^{-4} \text{ M min}^{-1}.$$

60. **Ans.** 345, 414. **Reason.** $2C(s) + 3H_2(g) \longrightarrow C_2H_6(g)$

$$\Delta_{f}H^{\circ} = \begin{bmatrix} 2 \times \Delta_{sub}H(C,s) \\ 3 \times B.E.(H-H) \end{bmatrix} - \begin{bmatrix} B.E.(C-C) \\ +6 \times B.E.(C-H) \end{bmatrix}$$

$$-85 = 2 \times 718 + 3 \times 436 - (x + 6y)$$

$$x + 6y = 2829$$
 ... (1)

Similarly, for $C_3H_8(g)$

$$2x + 8y = 4002$$
 ... (2)

from eqs. (1) and (2)

x = 345 kJ/mol; y = 414 kJ/mol.

MATHEMATICS

61. **Ans.**16 **Reason**: Let
$$E = \frac{(m^2 - n^2)^2}{mn}$$

$$\Rightarrow E = \frac{(m+n)^2(m-n)^2}{mn} \Rightarrow E = \frac{(2\tan A)^2(2\sin A)^2}{\tan^2 A - \sin^2 A}$$

$$\Rightarrow E = \frac{16 \tan^2 A \sin^2 A}{\sin^2 A \left(\frac{1 - \cos^2 A}{\cos^2 A}\right)}$$

$$\Rightarrow E = \frac{16 \tan^2 A \sin^2 A}{\tan^2 A \sin^2 A} = 16.$$

62. **Ans.** 4. **Reason**:
$$s = \frac{13+14+15}{2} = 21$$

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{21.8.7.6} = 84$$
Inradius = 84/21 = 4

63. **Ans.** ±1 **Reason**: We have
$$(\tan^{-1} x)^2 + \cot^{-1} x)^2 = \frac{5\pi^2}{8}$$

$$\Rightarrow (\tan^{-1} x + \cot^{-1} x)^2 - 2 \tan^{-1} x \left(\frac{\pi}{2} - \tan^{-1} x \right) = \frac{5\pi^2}{8}$$

$$\Rightarrow \frac{\pi^2}{4} - 2.\frac{\pi}{2} \tan^{-1} x + 2(\tan^{-1} x)^2 = \frac{5\pi^2}{8}$$

$$\Rightarrow 2(\tan^{-1} x)^2 - \pi \tan^{-1} x - \frac{3\pi^2}{8} = 0$$

$$\Rightarrow \tan^{-1} x = -\frac{\pi}{4}, \frac{3\pi}{4} \Rightarrow \tan^{-1} x = -\frac{\pi}{4} \Rightarrow x = -1.$$

- 64. **Ans.** (3, 7).
- 65. **Ans.** 0 **Reason** Put $\lambda = 0$ on both sides.

$$\begin{vmatrix} 0 & -1 & 3 \\ 1 & 0 & -4 \\ -3 & 4 & 0 \end{vmatrix} = t. \Rightarrow -12 + 12 = t$$

66. **Ans.**
$$(0, \infty)$$
. **Reason:** We have, $f(x) = \log x - \frac{2x}{2+x}$

$$\Rightarrow f'(x) = \frac{1}{x} - \left[\frac{2(2+x) - 2x}{(2+x)^2} \right] = \frac{(x+2)^2 - 4x}{x(2+x)^2}$$

$$= \frac{x^2 + 4}{x(x+2)^2} = \frac{(x^2 + 4)x}{x^2(x+2)^2} > 0, \text{ for } x > 0$$

 \therefore f(x) is increasing for x > 0.

67. **Ans.** tan ⁻¹ (1/2) **Reason:** We know that PT bisects

Let $\angle NPT = \angle TPS = \theta/2$. Then, $\angle PSX = \theta$.

$$\Rightarrow \tan \theta = \frac{16 - 0}{16 - 4} \Rightarrow \tan \theta = \frac{4}{3}$$

$$\Rightarrow \frac{2\tan\theta/2}{1-\tan^2\theta/2} = \frac{4}{3} \Rightarrow 3\tan\frac{\theta}{2} = 2-2\tan^2\frac{\theta}{2}$$

$$\Rightarrow 2 \tan^2 \frac{\theta}{2} + 3 \tan \frac{\theta}{2} - 2 = 0$$

$$\Rightarrow \left(2\tan\frac{\theta}{2}-1\right)\left(\tan\frac{\theta}{2}+2\right)=0$$

$$(2)(2)$$

$$\Rightarrow \tan \frac{\theta}{2} = \frac{1}{2}$$

$$\Rightarrow \frac{\theta}{2} = tan^{-1} \left(\frac{1}{2}\right) \Rightarrow \angle TPS = tan^{-1} \left(\frac{1}{2}\right).$$

68. **Ans.** $\frac{\sqrt{155}}{2}$ sq. units **Reason:** Let the vertices be A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2), then area of Δ ABC =

2, 3), B (2, 5, -1) and C (-1, 1, 2), then area of
$$\triangle$$
 ABC = $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$

 $\frac{\theta}{\sin \theta}$ is acute

$$=\frac{1}{2}\,|\,(\hat{i}+3\hat{j}-4\hat{k})\times(-2\hat{i}-\hat{j}-\hat{k})\,|\,=\frac{1}{2}\,\left|\,\begin{matrix}\hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -4 \\ -2 & -1 & -1\end{matrix}\right|.$$

69. **Ans.** $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{1}$ **Reason:** Line is \perp to 2x + 3y + 1

z + 5 = 0 means line is || to normal of the plane. D.N. of the normal are 2, 3, 1.

70. **Ans.** x + y + z = 0 **Reason** Any plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ is a (x + 1) + b (y - 3) + c (z + 2) = 0

Where
$$-3a + 2b + c = 0$$
 ... (2

This passes through (0, 7, –7)

∴
$$a + 4b - 5c = 0$$
 ... (3)

From (2) and (3), we get

$$\frac{a}{-10-4} = \frac{b}{1-15} = \frac{c}{-12-2} \Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{1}$$

Hence the required plane is x + 1 + y - 3 + z + 2 = 0 i.e., x + y + z = 0.

$$= a^2 + b^2 + c^2 + 2a \cdot b + 2b \cdot c + 2c \cdot a$$

$$\Rightarrow (0) = 2(a.b+b.c+c.a)+1+1+1$$

$$\Rightarrow (\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a})=-\frac{3}{2}.$$

- 72. **Ans.** $F_2 \cup F_3 \cup F_4 \cup F_1$. **Reason :** Since every rectangle, rhombus and square is a parallelogram so $F_1 = F_2 \cup F_3 \cup F_4 \cup F_1$.
- 73. Ans. $\omega^2 \cdot \left(\omega = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)$. Reason : $\frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} = \frac{a\omega + b\omega^2 + c\omega^3}{\omega(c + a\omega + b\omega^2)} = \frac{1}{\omega} = \omega^2$.
- 74. **Ans.** H.P. **Reason**: Here, $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$ $\Rightarrow \frac{(x-a)^2 b^2}{b(x-a)} + \frac{(x-b)^2 a^2}{a(x-b)} = 0$ $\Rightarrow (x-a-b) \left\{ \frac{x-a+b}{b(x-a)} + \frac{x-b+a}{a(x-b)} \right\} = 0$ $\Rightarrow (x-a-b) \left\{ a(x-a) (x-b) + ab(x-b) + b(x-a) (x-b) + ab(x-a) \right\} = 0$ $\Rightarrow x(x-a-b) \left\{ a(x-a) + (x-b) \right\} = 0$ $\Rightarrow x(x-a-b) \left\{ a(x-a) + (x-b) \right\} = 0$ $\Rightarrow x = 0, a+b, \frac{a^2+b^2}{a+b} \text{ so, } x_1 = a+b, x_2 = \frac{a^2+b^2}{a+b}, x_3 = 0$ Now, $x_1 x_2 x_3 = c \Rightarrow c = \frac{2ab}{a+b} \Rightarrow a, c, b \text{ are in H.P.}$
- 75. **Ans.** 50 **Reason:** We have, $\left[\frac{1}{2} + \frac{x}{100}\right] = \left\{0, \text{ if } 0 < x < 49\\ 1, \text{ if } 50 \le x \le 99$ Thus, $\left[\frac{1}{2}\right] + \left[\frac{1}{2} + \frac{1}{100}\right] + \left[\frac{1}{2} + \frac{2}{200}\right] + \dots + \left[\frac{1}{2} + \frac{99}{100}\right] = 50.$
- 76. **Ans.** $f(x) = \log x$ **Reason** ...
- 77. Ans. 12 Reason: Required limit

$$= \lim_{x \to 0} \frac{2f'(x) - 6f'(2x) + 4f'(4x)}{2x} \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{2f''(x) - 12f''(2x) + 16f''(4x)}{2} = 3f''(0) = 12.$$

78. **Ans.** $\frac{y}{x}$. **Reason**: Given $x^p y^q = (x + y)^{p+q}$. Taking long

on both sides, we get

 \Rightarrow p log x + q log y = (p + q) log (x + y) Diff. both sides w.r.t. x., we get

$$\frac{p}{x} + \frac{q}{y} \frac{dy}{dx} = (p+q) \left(\frac{1}{x+y} \right) \left(1 + \frac{dy}{dx} \right)$$

$$\Rightarrow \left(\frac{q}{y} - \frac{p+q}{x+y}\right) \frac{dy}{dx} = \frac{p+q}{x+y} - \frac{p}{x}$$

$$\Rightarrow \left(\frac{qx+qy-py-qy}{y(x+y)}\right)\frac{dy}{dx} = \frac{px+qx-px-py}{x(x+y)}$$

$$\Rightarrow \left(\frac{qx - py}{y(x + y)}\right) \frac{dy}{dx} = \frac{qx - py}{x(x + y)} \Rightarrow \frac{dy}{dx} = \frac{y}{x}.$$

79. **Ans.**
$$\frac{x}{y}$$
. **Reason:** $u = e^{x^2 + y^2}$

$$\Rightarrow \frac{\partial u}{\partial x} = e^{x^2 + y^2} (2x), \ \frac{\partial u}{\partial y} = e^{x^2 + y^2} (2y)$$

$$\therefore \ \frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} = \frac{2xe^{x^2+y^2}}{2ye^{x^2+y^2}} = \frac{x}{y} \, .$$

80. **Ans.**
$$-\frac{\pi^2}{8}$$
 . **Reason:** $z = e^{xy^2}$; $x = tcost$; $y = tsint$, then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{dy} \cdot \frac{dy}{dt}$$

$$= e^{xy^2}$$
. y^2 (-tsint + cost) + 2xy e^{xy^2} (tcost + sint)

= $t^2 \sin^2 t e^{t^3} \cos t \sin^2 t (-t \sin t + \cos t) + 2t^2 \sin t \cos t e^{t^3}$

$$\left(\frac{dz}{dt}\right)_{at\ t=\frac{\pi}{2}} = \frac{\pi^2}{4} \left(-\frac{\pi}{2}\right) = -\frac{\pi^3}{8} \ .$$

81. **Ans.** 4. **Reason:** The equation of the line is
$$y - 3 = \frac{3+2}{0-5}(x-0)$$
, i.e., $x + y - 3 = 0$.

Now, slope of tangent to
$$y = \frac{c}{x+1}$$
 is $\Rightarrow \frac{dy}{dx} = \frac{-c}{(x+1)^2}$

Let the line touches the curve at (α, β)

$$\therefore \alpha + \beta - 3 = 0 \text{ and } \beta = \frac{c}{\alpha + 1} \dots (1)$$

$$\frac{dy}{dx}\Big|_{(\alpha,\beta)} = \frac{-c}{(\alpha+1)^2} = -1 \dots (2) \Rightarrow \frac{c}{\left(\frac{c}{\beta}\right)^2}$$

= 1 {using (1) or
$$\beta^2$$
 = c

= 1 {using (1) or
$$\beta^2$$
 = c
 $\Rightarrow \beta^2$ = c \Rightarrow (3 - α)² = c = (α + 1)² {using (1)}
 $\Rightarrow 3 - \alpha = \pm(\alpha + 1) \Rightarrow 3 - \alpha = \alpha + 1$

$$\Rightarrow$$
 3 - α = $\pm(\alpha + 1)$ \Rightarrow 3 - α = α + 1

$$\alpha = 1$$

So,
$$c = (1 + 1)^2 = 4$$
. {using (2)}

82. **Ans.** 12.**Reason:** Since f(x) is decreasing in the interval (-2, -1), therefore, $f(x) < 0 \Rightarrow 6x^2 + 18x + \lambda < 0$.

The value of λ should be such that the equation

$$6x^2 + 18x + \lambda = 0$$
 has roots -2 and -1

Therefore,
$$(-2)(-1) = \lambda/6 \Rightarrow \lambda = 12$$
.

83. Ans. f'(2) does not exist. Reason: In the interval [-1, 2], f'(x) = 6x + 12 > 0. Hence f(x) is increasing in [-1, 2]. Now, f(x) being a polynomial in x is continuous in

$$-1 \le x < 2$$
. We check at $x = 2$.

$$\lim_{h \to 0} f(2-h) = \lim_{h \to 0} 3(2-h)^2 + 12(2-h) - 1$$

$$= 12 + 24 - 1 = 35$$

$$\lim_{h\to 0} f(2+h) = \lim_{h\to 0} 37 - (2+h) = 35.$$
 Also, $f(2) = 3(2)^2 + 12(2) - 1 = 35.$

Also,
$$f(2) = 3(2)^2 + 12(2) - 1 = 35$$

 \therefore f(x) is continuous at x = 2 and hence in the interval [-

Now, Lf'(2) =
$$\lim_{h\to 0} \frac{f(2-h)-f(2)}{-h}$$

$$= \lim_{h \to 0} \frac{3(2-h)^2 + 12(2-h) - 1 - 35}{-h}$$

$$= \lim_{h \to 0} \frac{3h^2 - 24h}{-h} = 24.$$

$$Rf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{37 - (2+h) - 35}{h} \ = -1.$$

- 84. **Ans.** $-\frac{\cos^4 x}{4} + c$ **Reason** : $\int \cos^3 x \sin x \, dx = -\int t^3 dt =$ $-\frac{\cos^4 x}{4} + c$, where $t = \cos x$.
- 85. Ans. $\frac{n^{-}x_p + x'p}{n^{-}x_p + x'p}$ Reason Since the mean = x,

therefore sum of the n observations = $n\bar{x}$.

When x_p is replaced by x_p , then the new sum= $nx - x_p + x_p$

So, new mean =
$$\frac{\overline{nx} - x_p + x'_p}{n}$$

86. Ans. 4/7 Reason Let E₁ denote the event "getting face marked i", where, i = 1, 2, ..., 6

Then, $P(E_i) = \lambda i$

Clearly, E₁, E₂, ... E₆ are mutually exclusive and exhaustive events, therefore,

$$P(E_1 \cup E_2 \cup ... \cup E_6) = P(S)$$

$$\Rightarrow \ \sum_{i=1}^6 P(E_i) = 1 \Rightarrow \ \sum_{i=1}^6 \lambda i = 1 \ \Rightarrow 21\lambda = 1 \ \Rightarrow \lambda = 1/21.$$

$$\therefore$$
 P (E_i) = i/21, i = 1, 2, ..., 6.

Required probability = P ($E_2 \cup E_4 \cup E_6$)

$$= P(E_2) + P(E_4) + P(E_6)$$

$$\frac{2}{21} + \frac{4}{21} + \frac{6}{21} = \frac{4}{7}$$

87. Ans. 1/969 Reason Let A, B, C, D denote events of getting a white ball in first, second, third and fourth draw respectively. Then Required probability

$$= P (A \cap B \cap C \cap D)$$

$$= P(A) P(B/A) P(C/A \cap B) P(D/A \cap B \cap C) \dots (1)$$

Now P (A) = Probability of drawing a white ball in first draw = 5/20 = 1/4.

When a white ball is drawn in the first draw there are 19 balls left in the bag, out of which 4 are white.

∴ P (B/A) =
$$4/19$$

Since the ball drawn is not replaced, therefore after drawing a white ball in second draw there are 18 balls left in the bag, out of which 3 are white.

∴ P (C/A
$$\cap$$
 B) = 3/18 = 1/6

After drawing a white ball in third draw there are 17 balls left in the bag, out of which 2 are white.

$$\therefore$$
 P (D/A \cap B \cap C) = 2/17

Hence, required probability = P (A \cap B \cap C \cap D)

= P (A) P (B/ A) P (C/ A
$$\cap$$
 B) P (D/ A \cap B \cap C)

$$= \frac{1}{4} \times \frac{4}{19} \times \frac{1}{6} \times \frac{2}{17} = \frac{1}{969}.$$

88. **Ans.** $\left(0, \frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right)\right)$ **Reason** The equation of the

biggest circle is $x^2 + y^2 = 1^2$

Clearly, it is Centered at O (0, 0) and has radius 1.

Let the radii of the other two circles be 1-r, 1-2r, where r > 0.

Thus, the equations of the concentric circles are:

$$x^2 + y^2 = 1$$
 ... (1)
 $x^2 + y^2 = (1 - r)^2$... (2)
 $x^2 + y^2 = (1 - 2r)^2$... (3)

$$x^2 + y^2 = (1-2r)^2$$
 ... (3

Clearly, y = x + 1 cuts the circle (1) at (1, 0) and (0, 1). This line will cut circles (2) and (3) in real and distinct

points if
$$\left| \frac{1}{\sqrt{2}} \right| < 1 - r$$
 and $\left| \frac{1}{\sqrt{2}} \right| < 1 - 2r$

$$\Rightarrow \frac{1}{\sqrt{2}} < 1-r \text{ and } \frac{1}{\sqrt{2}} < 1-2r$$

$$\Rightarrow r < 1 - \frac{1}{\sqrt{2}} \text{ and } r < \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right)$$

$$\Rightarrow r < \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right) \Rightarrow r \in \left(0, \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right) \right).$$
Ans.
$$\begin{vmatrix} a - a' & b - b' & c - c' \\ A & B & C \end{vmatrix} = 0$$

89. **Ans.**
$$\begin{vmatrix} a-a' & b-b' & c-c' \\ A & B & C \\ A' & B' & C' \end{vmatrix} = 0$$

Reason Let the given circles be $S_1 = 0$ and $S_2 = 0$. Let P, Q, R, S lie on the circles $S_3 = 0$.

Since Ax + By + C = 0 cuts the circle $S_1 = 0$ at P and Q. Therefore, Ax + By + C = 0 is the radical axis of $S_1 = 0$ and $S_3 = 0$.

Similarly, A'x + B'y + C' = 0 is the radical axis of $S_2 = 0$ and $S_3 = 0$.

The radical axis of $S_1 = 0$ and $S_2 = 0$ is

$$S_1 - S_2 = 0$$

i.e.,
$$x(a-a') + y(b-b') + c - c' = 0$$

Since the radical axis of three circle, taken in pairs, are concurrent. Therefore,

$$Ax + By + C = 0$$

$$A'x + B'y + C' = 0$$

and, x(a-a') + y(b-b') + c - c' = 0 are concurrent. Consequently, we have

$$\begin{vmatrix} a-a' & b-b' & c-c' \\ A & B & C \\ A' & B' & C' \end{vmatrix} = 0$$

The equation of a family of circles passing through P and Q is

$$x^{2} + y^{2} + ax + by + c + \lambda (Ax + By + C) = 0$$
 ... (1)

Similarly, the equation of a family of circles passing through R and S is

$$x^2 + y^2 + a'x + b'y + c' + \mu (A'x + B'y + C') = 0$$
 ... (2)

If points P, Q, R and S are concyclic points, then equations (1) and (2) must represent the same circle for some for values of λ and μ .

$$\therefore a + \lambda A = a' + \mu A'$$

$$b + \lambda B = b' + \mu B'$$

$$c + \lambda C = c' + \mu C'$$

$$\Rightarrow a - a' + \lambda A - \mu A' = 0 \qquad ... (3)$$

$$b - b' + \lambda B - \mu B' = 0 \qquad \qquad \dots (4)$$

$$c - c' + \lambda C - \mu C' = 0$$
 ... (5)

Eliminating λ and μ from equations (3), (4) and (5), we

$$\Rightarrow \begin{vmatrix} a-a' & b-b' & c-c' \\ A & B & C \\ A' & B' & C' \end{vmatrix} = 0.$$

90. **Ans.** 7/6 sq. units **Reason** We have, $y = x^2 + x + 1$

$$\Rightarrow \frac{dy}{dx} = 2x + 1 \Rightarrow \left(\frac{dy}{dx}\right)_{(1, 3)} = 3.$$

The equation of the tangent to $y = x^2 + x + 1$ at (1, 3) is y $-3 = 3 (x - 1) \Rightarrow y = 3x$. The equation $y = x^2 + x + 1$ represents a parabola

opening upward and having vertex at $\left(-\frac{1}{2},\frac{3}{4}\right)$

graph is shown in figure. The area enclosed by x = -1, y = 0, $y = x^2 + x + 1$ and y = 3x is shaded in figure. We slice the shaded region into vertical strips.

Required area = Area of region OABC + Area of region

$$= \int_{-1}^{0} y dx + \int_{0}^{1} (y_{1} - y_{2}) dx$$

$$= \int_{-1}^{0} (x^{2} + x + 1) dx + \int_{0}^{1} (x^{2} + x + 1 - 3x) dx$$

$$= \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right]_{-1}^{0} + \left[\frac{x^{3}}{3} - x^{2} + x \right]_{0}^{1}$$

$$= -\left(-\frac{1}{3} + \frac{1}{2} - 1 \right) + \left(\frac{1}{3} - 1 + 1 \right) = \frac{7}{6} \text{ sq. units.}$$

